123 research outputs found

    Born-Infeld type Gravity

    Full text link
    Generalizations of gravitational Born-Infeld type lagrangians are investigated. Phenomenological constraints (reduction to Einstein-Hilbert action for small curvature, spin two ghost freedom and absence of Coulomb like Schwarschild singularity) select one effective lagrangian whose dynamics is dictated by the tensors g_{\mu\nu} and R_{\mu\nu\rho\sigma}(not R_{\mu\nu} or the scalar R).Comment: 7 pages, 3 figures, revte

    Quantization of massive scalar fields over static black string backgrounds

    Full text link
    The renormalized mean value of the corresponding components of the Energy-Momentum tensor for massive scalar fields coupled to an arbitrary gravitational field configuration having cylindrical symmetry are analytically evaluated using the Schwinger-DeWitt approximation, up to second order in the inverse mass value. The general results are employed to explicitly derive compact analytical expressions for the Energy-Momentum tensor in the particular background of the Black-String spacetime. In the case of the Black String considered in this work, we proof that a violation of the weak energy condition occur at the horizon of the space-time for values of the coupling constant, that include as particular cases the most interesting of minimal and conformal coupling.Comment: 4 page

    Tunnelling, Temperature and Taub-NUT Black Holes

    Full text link
    We investigate quantum tunnelling methods for calculating black hole temperature, specifically the null geodesic method of Parikh and Wilczek and the Hamilton-Jacobi Ansatz method of Angheben et al. We consider application of these methods to a broad class of spacetimes with event horizons, inlcuding Rindler and non-static spacetimes such as Kerr-Newman and Taub-NUT. We obtain a general form for the temperature of Taub-NUT-Ads black holes that is commensurate with other methods. We examine the limitations of these methods for extremal black holes, taking the extremal Reissner-Nordstrom spacetime as a case in point.Comment: 22 pages, 3 figures; added references, fixed figures, added comments to extremal section, added footnot

    About Starobinsky inflation

    Full text link
    It is believed that soon after the Planck era, space time should have a semi-classical nature. According to this, the escape from General Relativity theory is unavoidable. Two geometric counter-terms are needed to regularize the divergences which come from the expected value. These counter-terms are responsible for a higher derivative metric gravitation. Starobinsky idea was that these higher derivatives could mimic a cosmological constant. In this work it is considered numerical solutions for general Bianchi I anisotropic space-times in this higher derivative theory. The approach is ``experimental'' in the sense that there is no attempt to an analytical investigation of the results. It is shown that for zero cosmological constant Λ=0\Lambda=0, there are sets of initial conditions which form basins of attraction that asymptote Minkowski space. The complement of this set of initial conditions form basins which are attracted to some singular solutions. It is also shown, for a cosmological constant Λ>0\Lambda> 0 that there are basins of attraction to a specific de Sitter solution. This result is consistent with Starobinsky's initial idea. The complement of this set also forms basins that are attracted to some type of singular solution. Because the singularity is characterized by curvature scalars, it must be stressed that the basin structure obtained is a topological invariant, i.e., coordinate independent.Comment: Version accepted for publication in PRD. More references added, a few modifications and minor correction

    Inflationary spectra and partially decohered distributions

    Full text link
    It is generally expected that decoherence processes will erase the quantum properties of the inflationary primordial spectra. However, given the weakness of gravitational interactions, one might end up with a distribution which is only partially decohered. Below a certain critical change, we show that the inflationary distribution retains quantum properties. We identify four of these: a squeezed spread in some direction of phase space, non-vanishing off-diagonal matrix elements, and two properties used in quantum optics called non-PP-representability and non-separability. The last two are necessary conditions to violate Bell's inequalities. The critical value above which all these properties are lost is associated to the `grain' of coherent states. The corresponding value of the entropy is equal to half the maximal (thermal) value. Moreover it coincides with the entropy of the effective distribution obtained by neglecting the decaying modes. By considering backreaction effects, we also provide an upper bound for this entropy at the onset of the adiabatic era.Comment: 42 pages, 9 figures; 1 ref. adde

    Back Reaction of Hawking Radiation on Black Hole Geometry

    Full text link
    We propose a model for the geometry of a dynamical spherical shell in which the metric is asymptotically Schwarzschild, but deviates from Ricci-flatness in a finite neighbourhood of the shell. Hence, the geometry corresponds to a `hairy' black hole, with the hair originating on the shell. The metric is regular for an infalling shell, but it bifurcates, leading to two disconnected Schwarzschild-like spacetime geometries. The shell is interpreted as either collapsing matter or as Hawking radiation, depending on whether or not the shell is infalling or outgoing. In this model, the Hawking radiation results from tunnelling between the two geometries. Using this model, the back reaction correction from Hawking radiation is calculated.Comment: Latex file, 15 pages, 4 figures enclosed, uses eps

    Action of the gravitational field on the dynamical Casimir effect

    Full text link
    In this paper we analyze the action of the gravitational field on the dynamical Casimir effect. We consider a massless scalar field confined in a cuboid cavity placed in a gravitational field described by a static and diagonal metric. With one of the plane mirrors of the cavity allowed to move, we compute the average number of particles created inside the cavity by means of the Bogoliubov coefficients computed through perturbative expansions. We apply our result to the case of an oscillatory motion of the mirror, assuming a weak gravitational field described by the Schwarzschild metric. The regime of parametric amplification is analyzed in detail, demonstrating that our computed result for the mean number of particles created agrees with specific associated cases in the literature. Our results, obtained in the framework of the perturbation theory, are restricted, under resonant conditions, to a short-time limit.Comment: 2 Figures, comments are welcom

    Hawking Radiation on an Ion Ring in the Quantum Regime

    Full text link
    This paper discusses a recent proposal for the simulation of acoustic black holes with ions. The ions are rotating on a ring with an inhomogeneous, but stationary velocity profile. Phonons cannot leave a region, in which the ion velocity exceeds the group velocity of the phonons, as light cannot escape from a black hole. The system is described by a discrete field theory with a nonlinear dispersion relation. Hawking radiation is emitted by this acoustic black hole, generating entanglement between the inside and the outside of the black hole. We study schemes to detect the Hawking effect in this setup.Comment: 42 pages (one column), 17 figures, published revised versio

    Vacuum Fluctuations of a massless spin-1/2 field around multiple cosmic strings

    Get PDF
    We study the interaction of a massless quantized spinor field with the gravitational filed of N parallel static cosmic strings by using a perturbative approach. We show that the presence of more than one cosmic string gives rise to an additional contribution to the energy density of vacuum fluctuations, thereby leading to a vacuum force attraction between two parallel cosmic strings.Comment: Class. Quantum Grav. 14(1997) 321

    The Theory of a Quantum Noncanonical Field in Curved Spacetimes

    Full text link
    Much attention has been recently devoted to the possibility that quantum gravity effects could lead to departures from Special Relativity in the form of a deformed Poincar\`e algebra. These proposals go generically under the name of Doubly or Deformed Special Relativity (DSR). In this article we further explore a recently proposed class of quantum field theories, involving noncanonically commuting complex scalar fields, which have been shown to entail a DSR-like symmetry. An open issue for such theories is whether the DSR-like symmetry has to be taken as a physically relevant symmetry, or if in fact the "true" symmetries of the theory are just rotations and translations while boost invariance has to be considered broken. We analyze here this issue by extending the known results to curved spacetime under both of the previous assumptions. We show that if the symmetry of the free theory is taken to be a DSR-like realization of the Poincar\'e symmetry, then it is not possible to render such a symmetry a gauge symmetry of the curved physical spacetime. However, it is possible to introduce an auxiliary spacetime which allows to describe the theory as a standard quantum field theory in curved spacetime. Alternatively, taking the point of view that the noncanonical commutation of the fields actually implies a breakdown of boost invariance, the physical spacetime manifold has to be foliated in surfaces of simultaneity and the field theory can be coupled to gravity by making use of the ADM prescription.Comment: 9 pages, no figure
    • …
    corecore